

Ben Weissman

- Ben Weissman, Solisyon, Germany
- b.weissman@solisyon.de
- SQL Server since 6.5
- Data Passionist

Certified Data Vault Modeler

Microsoft

Solutions Associate

Machine Learning

Microsoft

Solutions Expert

Data Management and Analytics

Data Science

Big Data

Artificial Intelligence

Data Analysis

kubernetes

So, what is a SQL 2019 Big Data Cluster?

Data Virtualization

Combine data from many sources without moving or replicating it Scale out compute and caching to boost performance

This slide: © by Microsoft

Managed SQL Server, Spark and Data Lake

Store high volume data in a data lake and access it easily using either SQL or Spark

Management services, admin portal, and integrated security make it all easy to manage

AI/ML Platform

Easily feed integrated data from many sources to your model training Ingest and prep data and then train, store and operationalize your models all in one system

The foundation of scale

Hadoop

Spark

Hardware Abstraction

Building on hardware, you can create a complete "PC" on top of a Hypervisor layer, which abstracts out the hardware. You still own the Operating System and up

This allows for scale by ring-fencing OS-level dependencies

Abstracting the OS, allowing complete portability

Containers go one level further than the Hypervisor, and focusing on binaries and applications
Storage and networking are a consideration
Scale is achieved through multiple containers

Containers at Scale

- Container(s) live in Pods
- Pod(s) are abstractions within Nodes
- Node(s) are PC's or VM's
- > **Cluster**(s) are groups of *Nodes*
- Storage is by means of **Volume**(s) mounted through a *Claim*

...without all that tech stuff?

https://www.cncf.io/wp-content/uploads/2019/07/The-Illustrated-Childrens-Guide-to-Kubernetes.pdf

Or talk to this guy...

OLTP, Data Virtualization, Data Mart and Big Data

OLTP, Data Virtualization, Data Mart and Big Data

PolyBase only

- Get SQL 2019 from http://microsoft.com/sql
- Install SQL Server on Windows or Linux including PolyBase
- > Enable PolyBase after installation:

```
exec sp_configure @configname = 'polybase enabled', @configvalue = 1;
RECONFIGURE
```

- Restart SQL Server
- > Install Azure Data Studio and Data Virtualization Extension

The full package

- Decide on a Kubernetes environment (AKS, kubeadm, ...)
- > Install Azure Data Studio and Data Virtualization Extension
- Install Prerequisites*
- Deploy the cluster using azdata/Azure Data Studio

pip3 install -r https://aka.ms/azdata

```
Set-ExecutionPolicy Bypass -Scope Process -Force; iex ((New-Object System.Net.WebClient).DownloadString('https://chocolatey.org/install.ps1'))
choco install notepadplusplus -y
choco install 7zip -y
choco install curl -y
choco install sqlserver-cmdlineutils -y
choco install azure-cli -y
choco install azure-data-studio -y
choco install python3 -y
$env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
python -m pip install --upgrade pip
python -m pip install requests
python -m pip install requests --upgrade
choco install kubernetes-cli -y
pip3 install Kubernetes
choco install visualcpp-build-tools -y
```


.\bootstrap-sample-db.cmd

USAGE: .\bootstrap-sample-db.cmd <CLUSTER_NAMESPACE> <SQL_MASTER_IP> <SQL_MASTER_SA_PASSWORD>

<BACKUP_FILE_PATH> <KNOX_IP> [<KNOX_PASSWORD>]

Default ports are assumed for SQL Master instance & Knox gateway.

https://github.com/Microsoft/sql-server-samples/tree/master/samples/features/sql-big-data-cluster

Ben Weissman

@bweissman
b.weissman@solisyon.de

linkedin.com/in/weissmanben/

Thank You For Your Time!

