Application of Time Series Data Bases in Business Intelligence

Dr. rer. nat. Sandra Geisler

Outline

- Basic principles of time series and time series data bases
- Get a glance at the InfluxDB and the TICK Stack
- Mapping the TICK Stack to a business intelligence ecosystem
- Get a glance at Druid as an OnLine Analytical Processing Time Series Data Base

Time Series Data – Be up to Date

- Time Series: chronologically ordered sequence of data points
- Examples: Sensor readings, stock market prices, network traffic, application health & performance data, sales information
- Challenges:
 - Data coming in with potentially high volume and frequency
 - Storage, querying, and analysis must be highly efficient
 - Scalability: ensure high availability and reliability

Time Series Data Bases (TSDB)

Stores time-stamped data incl. metadata (tags) and metrics (group, time-series) [1]

h2o_feet,location=here water_level=8.120,description="between 6 and 9 feet" 1439856000

- Optimized for queries on time series
 - Aggregations over large time periods
 - Keep current data points for analysis
 - Main operations are inserts
- Storage Characteristics
 - Format: NoSQL, relational, columnar
 - Location: In-memory, disk storage
 - Distribution / Clusterability [1]
 - Depends on separate DBMS [1]
 - Granularity [1]

Example: System Health Monitoring @Facebook [2]

- Goal: Health and performance monitoring to rapidly identify and diagnose server problems
- Beringei (fka Gorilla): Distributed in-memory TSDB
 - write-through cache with time series compression
 - Sharding by metric → time series can be mapped to node
- Store and query time series of system measures
 - Writes: tens of millions data points/s, 2 billion metrics
 - Storage: 26 hour storage period, granularity of 15 s, two replicas
 - Query: response times of milliseconds, 40.000 queries/second

Applications of TSDB in Business Intelligence

- **Business Intelligence:** Analyze company data and gain insights to improve business processes and decisions
- TSDB: provide historical data, but also near real-time data
- Combination allows near real-time predictions, pattern recognition, outlier detection, monitoring & alerting
- Example BI Applications
 - Predictive maintenance in production processes
 - Risk analysis and prediction for insurances or loans
 - Stock management based on real-time sales numbers

A General Business Intelligence Ecosystem

Adapted from Source: http://www.microsofttrends.com/2014/10/29/process-your-big-data-using-new-azure-data-factory/ Dr. rer. nat. Sandra Geisler

Example: InfluxDB – The TICK Stack Architecture

Demo: InfluxDB, Telegraf, Chronograf

Example:

System Parameter Monitoring

Dr. rer. nat. Sandra Geisler

Example Apache Druid – Time Series OLAP [3]

- Online Analytical Processing (OLAP): data is stored preaggregated in a multi-dimensional schema
- Apache Druid: distributed column-oriented TSDB enabling slice-and-dice-analytics
- Data is partitioned by time → fast time series queries
- Millions of data points / s, can store years of data
- Used by AirBnB, Netflix, eBay, PayPal...

Timestamp Dimensions Metrics

Timestamp	Page	Username	Gender	City	Characters Added	Characters Removed
2011-01-01T01:00:00Z	Justin Bieber	Boxer	Male	San Francisco	1800	25
2011-01-01T01:00:00Z	Justin Bieber	Reach	Male	Waterloo	2912	42
2011-01-01T02:00:00Z	Ke\$ha	Helz	Male	Calgary	1953	17
2011-01-01T02:00:00Z	Ke\$ha	Xeno	Male	Taiyuan	3194	170

Dr. rer. nat. Sandra Geisler

Source: http://druid.io/docs/latest/design/segments.html

Apache Superset BI Web Application

Bibliography

- [1] Bader, A., Kopp, O., & Falkenthal, M. (2017). Survey and comparison of open source time series databases. Datenbanksysteme für Business, Technologie und Web (BTW 2017)-Workshopband.
- [2] Pelkonen, T., Franklin, S., Teller, J., Cavallaro, P., Huang, Q., Meza, J., & Veeraraghavan, K. (2015). Gorilla: A fast, scalable, in-memory time series database. *Proceedings of the VLDB Endowment*, 8(12), 1816-1827.
- [3] Apache Druid (part 1): A Scalable Timeseries OLAP Database System, Anastasios Skarlatidis, https://anskarl.github.io/post/2019/druid-part-1, Last Access: 04.06.2019